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Figure 1.1: Demand and capacity - a conceptual model
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Figure 1.2: Shown are four patient scenarios. The bars represent total demand including
chronic disease (blue), acute illness (orange) and solute/fluid excess (green).

The top two panels represent no RRT—the left illustrates early reversal of AKI and the
right shows progressive renal failure and increasing discrepancy between renal function
capacity and physiological demands.

The two bottom panels illustrate the effect of RRT (dashed lines) with (left) early (E) or
later (L) initiation and two different demand-capacity discrepancy patterns. On the right
the patient scenario illustrated is different with high underlying disease burden and
either initiation of continuous RRT on day 2 transitioning to intermittent RRT on day 4
(dashed line marked as C-l) or initiation of intermittent therapy on day 4 (I).
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Figure 1.3: Characteristics and risks of different RRT modalities. Abbreviations: CRRT =
continuous renal replacement therapy; IHD = intermittent haemodialysis; PIRRT =
prolonged intermittent renal replacement therapy; SLED = slow efficiency dialysis; PD =
peritoneal dialysis.
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Figure 1.4: Potential pathways following an episode of AKI, including transition

of RRT modalities. Abbreviations: ESRD = end stage renal disease; CRRT = continuous
renal replacement therapy; PIRRT = prolonged intermittent renal replacement therapy
IHD = intermittent hemodialysis.
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Figure 2.1: Concept of dynamic continuous renal replacement therapy (CRRT) dose.
Following the initial prescription of CRRT, treatment begins which may modify patient
course and outcome. At this point, providers should frequently reassess the response to
prescribed CRRT dose. This can be achieved by following selected quality measures
focused on CRRT dose. These quality measures could target delivered clearance; ratio of
delivered to prescribed dose; effective treatment time; and other measures of solute
control. Furthermore, the patient’s clinical condition may change while receiving CRRT.
In such circumstances, CRRT prescription may require additional modification (e.g.,
reduction or interruption of net ultrafiltration in response to hemodynamic
deterioration and/or hypovolemia).
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Figure 2.2: Precision CRRT delivery. CRRT dose should be dynamic and adapted to
changes in acuity, physiology and metabolic profile of critically ill patients. For example,
Patient A has pneumonia and oliguric AKI. The CRRT dose is increased from the default
of 20 ml/kg/h to 35 ml/kg/h after 24 hours due to the development of a hypercatabolic
state characterized by sepsis and increasing serum urea concentration. The next day,
the patient’s condition improves and urea control is achieved. The CRRT dose can now
be reverted to 20 ml/kg/h. By day 3, the patient receives nutritional support which
contributes to increasing serum urea concentrations at a CRRT dose of 20 ml/kg/hr. This
would again require dose modification. Alternatively, Patient C has diuretic-resistant
congestive heart failure and fluid overload. Following initial CRRT prescription primarily
for fluid removal, solute clearance exceeds demand due to residual kidney function.
Accordingly, the patient’s CRRT dose is reduced to 15 ml/kg/h. By day 2, the patient’s
urine output decreases and serum urea concentration increases. In this circumstance,
the prescribed CRRT dose can be increased to achieve the new solute control target.
Finally, Patient B is critically ill and is admitted to ICU following surgery. This patient
achieves steady state solute control without the need for modification with the default
CRRT dose of 20-25 ml/kg/hr.
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Figure 3.1: The role of technology at different levels in the continuum of AKI

management
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Figure 3.3: Determinants allowing adequate RRT prescription and delivery
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According to the actual patient’s
physiological requirement (green line),
the clinician sets the CRRT prescription
(purple line) over time. Depending on
several factors, such as patient,
treatment and  environment, the
prescription will determine a specific
treatment delivery (red line). Although
the prescription is continuously adapted
(points I, II, III, IV, etc), a marked
difference is evident between the actual
patient’s  requirements and  the
prescription.

If a prescription-delivery feedback loop
is used (e.g. biofeedback), the
differences between the treatment
delivery and patient’s physiologic
requirement might be instantaneously
measured (in this example, through the
angle between the two curves). In this
setting, the delivery may be modulated
according to the patient’s needs,
through automated, assisted or manual
changes of the prescription (point 1, 2,
3,4, etc).

As continuous changes are made
according to the feedback analysis, the
time average deviation between the
delivery and the patient’s need (area A,
B, C, D, etc) is progressively reduced
over time. Furthermore, as the maximal
deviation between the delivery and the
patient’s need progressively decreases
during the treatment, increasingly small
variations are required to actually
delivery an “adequate treatment™ (the
overlap between the green and the red
curves)

Figure 3.4: The role of prescription-delivery feedback loop during CRRT. (*) Includes
solutes, acid-base, fluids and other patient and treatment variables.
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Figure 3.5: Nomogram to achieve precision delivery of CRRT when dose is prescribed

according to ideal weight and fluid overload or downtime may induce variations in
effective delivery.
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Figure 3.6: Radar plot describing the broader spectrum of adequacy. Every single aspect
can be measured in arbitrary or objective units, but the final result of the polygon in the
radar plot will describe a comprehensive evaluation of treatment adequacy. Some
examples in plots (top right and bottom left) describe incomplete adequacy while in the
bottom right panel a fully adequate treatment is described.
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Figure 3.8: Different options for data collection in CRRT
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Figure 4.1: Conceptual Framework Of Fluid Management During CRRT. UF heparin:
unfractionated heparin; LMWH: low molecular weight heparin
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Figure 4.2: Principles of Fluid Management in CRRT. Fluid regulation encompasses all
components of fluid management in the patient undergoing CRRT and includes: CRRT
machine balance (ultrafiltration and replacement fluid use) and patient fluid balance.
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Figure 4.3: Integrated Balance (ibalance). The machine fluid balance (grey circle)
depends on ultrafiltration, replacement fluid rates and anticoagulation. The net patient
fluid balance (red circle) is calculated as the algebraic sum of patient inputs (e.g., blood
compounds, drugs, nutrition) and outputs (e.g., urine output, drains, insensible losses).
The machine-patient integrated fluid balance (ibalance) (blue arrow), which derives
from the combination of the machine and the net patient fluid balance, is achievable
only when frequent assessment of fluid inputs and outputs and CRRT fluid balance
machine parameters are performed (e.g., every 1-2 hours). The more frequent the
assessment, the shorter is the time gap (vertical axis) and more precise the ibalance
(horizontal axis).
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Figure 4.4: Approaches to Fluid Regulation with CRRT Fluid Balance. Two different
methods can be used to achieve the target fluid balance with CRRT. In method A, the
net ultrafiltration rate is varied on an hourly basis. In method B, the net ultrafiltration
rate is fixed and the replacement fluid is varied. Hybrid strategies of variable
ultrafiltration and replacement fluid rates can also be utilized.
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